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Abstract
Background: Delta radiomics is a high-throughput computational technique
used to describe quantitative changes in serial, time-series imaging by con-
sidering the relative change in radiomic features of images extracted at two
distinct time points. Recent work has demonstrated a lack of prognostic signal
of radiomic features extracted using this technique. We hypothesize that this
lack of signal is due to the fundamental assumptions made when extracting
features via delta radiomics, and that other methods should be investigated.
Purpose: The purpose of this work was to show a proof-of -concept of a new
radiomics paradigm for sparse, time-series imaging data, where features are
extracted from a spatial-temporal manifold modeling the time evolution between
images, and to assess the prognostic value on patients with oropharyngeal
cancer (OPC).
Methods: To accomplish this, we developed an algorithm to mathematically
describe the relationship between two images acquired at time t = 0 and t > 0.
These images serve as boundary conditions of a partial differential equation
describing the transition from one image to the other. To solve this equation,
we propagate the position and momentum of each voxel according to Fokker–
Planck dynamics (i.e., a technique common in statistical mechanics). This
transformation is driven by an underlying potential force uniquely determined
by the equilibrium image. The solution generates a spatial-temporal manifold
(3 spatial dimensions + time) from which we define dynamic radiomic fea-
tures. First, our approach was numerically verified by stochastically sampling
dynamic Gaussian processes of monotonically decreasing noise. The trans-
formation from high to low noise was compared between our Fokker–Planck
estimation and simulated ground-truth. To demonstrate feasibility and clinical
impact, we applied our approach to 18F-FDG-PET images to estimate early
metabolic response of patients (n = 57) undergoing definitive (chemo)radiation
for OPC. Images were acquired pre-treatment and 2-weeks intra-treatment
(after 20 Gy). Dynamic radiomic features capturing changes in texture and mor-
phology were then extracted.Patients were partitioned into two groups based on
similar dynamic radiomic feature expression via k-means clustering and com-
pared by Kaplan–Meier analyses with log-rank tests (p < 0.05). These results
were compared to conventional delta radiomics to test the added value of our
approach.
Results: Numerical results confirmed our technique can recover image noise
characteristics given sparse input data as boundary conditions. Our tech-
nique was able to model tumor shrinkage and metabolic response. While no
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delta radiomics features proved prognostic, Kaplan–Meier analyses identified
nine significant dynamic radiomic features. The most significant feature was
Gray-Level-Size-Zone-Matrix gray-level variance (p = 0.011), which demon-
strated prognostic improvement over its corresponding delta radiomic feature
(p = 0.722).
Conclusions: We developed, verified, and demonstrated the prognostic value
of a novel,physics-based radiomics approach over conventional delta radiomics
via data assimilation of quantitative imaging and differential equations.

KEYWORDS
modeling, radiomics, treatment response

1 INTRODUCTION

Radiomics is a high-throughput computational tech-
nique that enables the extraction and analysis of quan-
titative features from radiological images.1–3 Radiomic
features provide measures of different morphological,
topological, and/or textural characteristics of an image,
which can lead to new diagnostic and/or prognostic
value.4,5 In particular, delta radiomics aim to capture
quantitative changes in serial, time-series image rep-
resentation. This technique is based on calculating
the relative change in radiomic features between two
acquisition time points.6 Delta radiomic features have
shown improved prognostic value compared to radiomic
features of a single time point.7,8

There are numerous applications of delta radiomics
throughout the literature.8–14 However, despite the
potential advantages of incorporating multiple images,
an often-understudied aspect of delta radiomics is accu-
rate and reliable time interval analysis. Time interval
analysis is the characterization of quantitative changes
in image metrology over time.

Clinical image acquisition is temporally sparse, which
results in disease characterization based on radiomic
feature differences between a limited number of images.
For example, delta radiomics calculated via two images
acquired before and after treatment assumes a lin-
ear relationship between radiomic feature change and
treatment response. This is potentially an oversimplifi-
cation of the problem that may not be valid for complex
diseases such as cancer, where tumors likely exhibit
non-linear time dynamics.15

To address this limitation, we propose a novel
approach to delta radiomics based on the assimila-
tion of stochastic differential equations and quantitative
radiomic analysis.Our approach is based on the Fokker–
Planck16–18 equation, that is, a partial differential equa-
tion describing the probability distribution of a stochas-
tic process. Essentially, we first use Fokker–Planck
dynamics to model non-linear behavior between time
separated images, from which radiomic features are
calculated from a pseudo-continuous function. In gen-
eral, Fokker–Planck dynamics mathematically describe

countless many-body problems in physics (e.g., the dif-
fusion of pollutants through the atmosphere,19 electron
transport in semiconductors,20 calcium absorption in
bones,21 and the random walk of stars and black holes
due to the gravitational force of nearby stellar bodies22).
Thus, we consider Fokker–Planck a reasonable mathe-
matical framework for conducting time interval analysis
between images to drive delta radiomics.

In this paper, we first provide a theoretical frame-
work and numerical validation of our method. We then
apply our method to a characterize the early metabolic
response of patients undergoing definition radiation
therapy for oropharyngeal head and neck cancer, where
dynamic radiomic features on PET imaging are cal-
culated via Fokker–Planck dynamics and compared to
their classical delta radiomic analogues.

2 METHODS

2.1 Theory

2.1.1 Equilibrium-driven deformation via a
Fokker–Planck algorithm

We developed an equilibrium-driven deformation algo-
rithm (EDDA) to simulate the temporal evolution
between two tomographic images, 𝜌o(x, y, z) ∈ ℝ3 and
𝜌t(x, y, z) ∈ ℝ3, acquired at t = 0 and t > 0, respectively.
Given two images, one initial (𝜌o) and one final (𝜌t),
the process of generating motions (i.e., extrapolated
intermediate images) between them is known as “inbe-
tweening auto-animation23”. Instead of using compli-
cated kinematic equations to evolve each object within
the starting image, this work used an algorithm based on
Fokker–Planck dynamics known as equilibrium-driven
deformation.24,25 The fundamental principle behind this
algorithm is the definition of a potential function that
drives the time dynamics between 𝜌o and 𝜌t.This poten-
tial function is uniquely defined by 𝜌t, which acts as
the equilibrium state under Fokker–Planck dynamics.
By using Fokker–Planck dynamics as an approach to
time interval analysis, it may capture the complex and
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F IGURE 1 Illustration of the Fokker–Planck image-inbetweening algorithm. The functions 𝜌(x, t = 0) and 𝜌(x, t > 0) represent the initial and
equilibrium boundary conditions, respectively. P(i, j|t) is the corresponding probability density function. The algorithm generates inbetween
states between 0 and 20 Gy shown by the lower panel.

often poorly described dynamics associated with the
biological processes of tumor treatment response.

First, let Ω ⊂ ℝ3 be a closed subset on ℝ3. We define
the initial and equilibrium images on Ω as 𝜌0 and 𝜌t,
respectively.We then assume that the final image onΩ is
described by the equilibrium density function 𝜋(x) : Ω →

R. Then, the time-evolution of the gray-level value of the
image, 𝜌, is described by the Fokker–Planck equation,

𝜕t𝜌 = Δ𝜌 + ∇ ⋅ (𝜌∇𝜙) = ∇ ⋅
(
𝜋∇

( 𝜌
𝜋

))
(1)

where 𝜙 represents a given energy landscape. One can
show by direct computation that the equilibrium is given
by 𝜋 ∝ e−𝜙. This is analogous to the concept of the
Gibbs measure in statistical mechanics.26 The initial
data, 𝜌0, satisfies,

∫ 𝜌0 dx = ∫ 𝜋 dx. (2)

In this context, the images 𝜌o and 𝜌t are interpreted
as no-flux boundary conditions of Equation (1), that is,
they obey

n ⋅ ∇
( 𝜌
𝜋

)
= 0 on 𝜕Ω, (3)

where n is the normal vector to the boundary surface 𝜕Ω.
Physically, 𝜌 represents gray-level intensities (pixel val-
ues) of the equilibrium image 𝜌t. The evolution between
𝜌0 and 𝜌t is driven by a unique underlying potential
force defined by the equilibrium (Figure 1). For tomo-
graphic images on ℝ3, Equation (1) generates a set of
3D matrices which contain pixel values at each spatial

location. Each matrix corresponds to a given time point
between the initial and equilibrium image. Therefore, we
defined the spatial-temporal manifold as the 4D array
that describes the time evolution of a 3D spatial vol-
ume according to Equation (1). Equation (1) essentially
projects image data on ℝ3 to time-series data, defined
as a tensor object on ℝ4. Mathematically, we define this
manifold Ψ as the following tensor object,

Ψ ⊂ ℝ4 =
{

(x, y, z, t) |x, y, z ∈ ℝ, t ∈ ℝ+
}
. (4)

To numerically solve Equation (1), we apply an EDDA
using a finite-volume method on structured grids, as
implemented by Gao et al.23 Finite-volume discretiza-
tion methods can be applied to many conservation laws,
with a particular advantage being local conservativity
of fluxes.27 This is useful in problems such as image-
inbetweening, where fluxes are crucial in defining the
boundary conditions.

2.1.2 Dynamic radiomic feature extraction

As described in Section 2.1.1, Equation (1) pro-
duced a 4-dimensional spatial-temporal manifold. This
manifold was then mapped back into image space,
which produced a tensor object representing the time
evolution between the initial image and the equilib-
rium image. High-throughput radiomics features were
extracted using an in-house pipeline,28 validated both
through standard Image Biomarker Standardization Ini-
tiative (IBSI) benchmarking4 and externally, using digital
bar phantoms.29 This feature extraction generated a
dynamic radiomic feature space, capturing the time
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F IGURE 2 Visualization of the dynamic radiomic feature space
extracted from the spatial-temporal manifold generated via
Fokker–Planck dynamics.

evolution of the radiomic features. Mathematically, the
feature space can be represented by a tensor object, ,
given a set of p features for q image sets (i.e., pairs of
initial and equilibrium images) across r time points,

 =
(
fi,j,k

)
∈ ℝp×q×r (5)

where, the coordinates (i, j, k) represent the ith radiomic
feature observed for the jth image set at the kth time
step. As an illustrating example, if each image set corre-
sponded to a given patient,Figure 2 shows the structure
of the resulting dynamic feature space.

This feature space encodes variation of radiomic
features across different patients and across time. By
construction, this feature space allows for analysis along
all three dimensions, that is, features for all patients at a
given time, variations of single features across time for
all patients etc.

2.1.3 Numerical validation on 2D random
Gaussian processes

To experimentally verify the technique outlined in Sec-
tion 2.1.1, the algorithm was used to model monotoni-
cally decreasing noise generated by randomly sampling
2D Gaussian processes. By stochastically sampling 2D
Gaussian processes of different full-width-half -max val-
ues, images of various noise levels were generated,
which served as the ground-truth for the experiment. In
this experiment we consider “noise evolution”, that is, the
transition between images of high noise value to images
of low noise value, rather than “time evolution”.

All steps of the evolution were zero-mean centered
Gaussian noise acting on the same 128 × 128 random
matrix of pixel intensities ranging from 0 to 1. Each step
had a non-linear narrowing of the noise distribution full
width at half maximum (FWHM) ranging from 0.8 to
0.0003 spanning 14 measurements.

The Fokker–Planck method (Equation (1)) was then
applied, using only the images with maximum and min-
imum noise as the initial and equilibrium boundary
conditions, respectively, according to Equation (3). To
compare the Fokker–Planck technique to the experi-
mental ground-truth, image energy and entropy were
calculated and plotted against noise level. These fea-
tures were calculated via the image intensity histograms
and the standard IBSI definitions,30

E =

Ng∑
i=1

p2
i (6)

S = −

Ng∑
i=1

pi log2 pi, (7)

where Ng is the number of discretized intensity bins and
pi is ratio of counts in the ith intensity bin to the total
number of pixels in the image.

2.2 Proof-of-concept application of
Fokker–Planck dynamics to patients
treated for oropharyngeal cancer

Figure 3 shows the overall workflow of our patient study,
as described in the following section.

2.2.1 Clinical trial design and PET image
acquisition

In this work, patient data was acquired from a single-
institution, prospective clinical study (NCT01908504)
conducted at Duke University Medical Center. Patients
underwent curative intensity modulated radiation ther-
apy (IMRT) for a positive diagnosis of oropharyngeal
cancer (OPC). Radiation treatment was delivered via
two distinct fractionation schemes:a total dose of 70 Gy
in 35 fractions, and a total dose of 67.5 Gy in 30 frac-
tions. Most patients received concurrent chemotherapy
according to well-established clinical procedures (mod-
ified bolus cisplatin at 20 mg/m2 over Days 1−5 and
29−33, weekly cisplatin, or weekly docetaxel). For the
purposes of this analysis, exclusion criteria were as
follows: (i) a diagnosis of p16-positive head and neck
squamous cell carcinoma with unknown primary; (ii) any
prior surgical removal/resection of the primary tumor;
(iii) multiple synchronous primary tumors; and (iv) any
neoadjuvant chemotherapy before definitive radiation
treatment.

At the conclusion of radiation treatment,patients were
examined every 2−3 months via fiberoptic laryngoscopy,
diagnostic imaging (PET/CT and additional imaging as
necessary) and biopsy of recurrence-indicating lesions.
Recurrence-free survival (RFS) was used as the main
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F IGURE 3 Retrospective patient study workflow. (a) Pre- and intra-treatment PET/CT images are acquired for N patients and the gross
tumor volume (GTV) is manually segmented. Images serve as boundary conditions to the Fokker–Planck equation (𝜌o and 𝜌t) and are input into
the algorithm, generating simulated images between the boundary conditions (i.e., the spatial-temporal manifold Ψ defined in Equation (4). (b)
Radiomic features are extracted from the time series data, generating the feature space  , defined in Equation (5). Patient-specific feature
trajectories are clustered using a k-means algorithm into 2 groups and tested for prognostic significance, according to Equation (9).

endpoint for the study and defined as the time between
conclusion of radiation treatment and detection of
recurrent/residual local, regional, and/or distant disease.
After the final follow-up patients were censored, and
median follow-up time was computed via the reverse
Kaplan–Meier approach.31

For each patient, two sets of 18F-FDG-PET/CT
images were taken. The first set was obtained before
patients underwent radiation treatment, and the second
set was obtained after 2 weeks (20 Gy) of treatment.
The same scanner (Siemens Biograph mCT PET/CT,
Siemens Medical Solutions, Knoxville, TN) was used
for each patient. Imaging protocols were standardized
across the patient according to the prospective clini-
cal trial design. Depending on the weight of the patient,
8−15 mCi of FDG activity was injected following 4 h
of fasting, with the time between injection and imaging
kept constant across pre-treatment and intra-treatment
imaging for each patient. For the PET imaging pro-
tocol, a 54 cm field-of-view with a 400 × 400 matrix

size and 2 mm slice thickness. For the CT imaging
protocol, an extended 65 cm field-of-view was used,
with a 512 × 512 matrix size and 3 mm slice thick-
ness. PET images were reconstructed via ordered
subset expectation maximization (OSEM) with time-
of -flight (TOF) correction and attenuation correction
(from CT). CT images were reconstructed using filtered
back-projection.

Following image acquisition, a radiation oncologist
manually delineated the gross tumor volumes at the
primary disease location (GTVp). This was done on the
CT images and then transferred to the PET images.
Images were re-sampled to an isotropic resolution of
1.17 mm via tri-cubic spline interpolation and sub-
sequently re-binned to a dynamic range of 64 gray
levels, as recommended by the IBSI. Image registration
and verification was done following a method estab-
lished by prior work.32 Intra-treatment PET/CT images
were registered to pre-treatment images first by rigid
bony structure alignment, followed by local soft tissue
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F IGURE 4 Inbetween PET/CT images of a given patient generated by Fokker–Planck evolution from two clinical images, 𝜌0 and 𝜌t .

adjustment using the deformable multi-pass registration
algorithm within the Velocity software (Varian Medical
Systems, Palo Alto, CA, United States).

2.2.2 Construction of a spatial-temporal
manifold

The pre-treatment and intra-treatment PET/CT images
defined the initial and equilibrium conditions for Equa-
tion (1), which obey the boundary conditions prescribed
by Equation (3). As an illustrating example, consider
Figure 4, which shows a single 2D slice of a PET/CT
image volume (for a representative patient) at different
timepoints across the 2-week interval, with the real and
simulated images indicated.

PET/CT imaging data is generally sparse and shows
mostly uniform uptake with small regions of much higher
uptake, which define the tumor. Therefore, a minimum
bounding box around the initial gross tumor volume
was defined using contours drawn by physicians. These
minimum bounding boxes define the initial and equilib-
rium images on which we applied the Fokker–Planck
method.

To evaluate convergence of the Fokker–Planck solu-
tion to the equilibrium image, the following maximum
error metric was used,

M (t) = max {|𝜌t (i, j, k, t) − 𝜌t (i, j, k, nt)|} (8)

where, nt = 10000 is the final timestep.
Fokker–Planck dynamics follow a non-linear time

evolution determined by Equation (1). The differences
between an image at time t and the equilibrium
image (i.e., time nt) decrease very quickly at the start
of the evolution and then gently converge at larger
timesteps. To capture this non-linearity, timestep val-
ues were sampled at equal intervals along the y-axis,
which gave a scalar vector of timesteps represent-
ing equivalent change in maximum error. By sampling
the original spatial-temporal manifold at these calcu-

lated timesteps, a new four-dimensional tensor, 𝜌t was
defined.

Given the well-studied importance of image texture
as a biomarker for metabolic heterogeneity and sub-
sequent recurrence-free survival,1 it was necessary to
describe changes in the tumor shape and volume across
the evolution. As there is no “gold-standard” method for
thresholding tumor volume in PET/CT images, an abso-
lute standardized uptake value (SUV) of 2.5 was used.33

Given that the transformation into Fokker–Planck space
(i.e. probability density functions) does not preserve the
physical meaning of pixel intensity values, an absolute
SUV threshold of 2.5 was scaled by the SUVmax of
the initial image, thereby defining a tumor-specific rel-
ative threshold.33 This threshold allowed for generation
of binary masks at each timestep and therefore calcu-
lation of intensity masks and subsequent extraction of
radiomic features, as introduced in Section 2.1.2.

2.2.3 Dynamic radiomic feature analysis

For each patient included in this clinical application, we
applied Equation (1) to generate a fourth-order ten-
sor representing the time-evolution of a spatial volume
surrounding the primary tumor bed. This formed the
(patient-specific) spatial-temporal manifold from which
we extracted dynamic radiomic features.

We performed feature extraction via the method
outlined in Section 2.1.2. For each dynamic radiomic
feature, we partitioned the curves (representing patient-
specific time evolution of a given feature) using the
following k-means clustering algorithm:Given a dynamic
radiomic feature f , we have a set of N feature vec-
tors (f 1, f 2,… , f N), where N = 57 is the number of
patients. Therefore, each feature vector f i represents
the time evolution of feature f for the ith patient. To
compare patients that responded to treatment with
those that did not, the algorithm then partitions the
set of feature vectors into k = 2 sets (or clusters), S =

{Group 1, Group 2}. This is accomplished by minimiz-
ing the within-cluster sum of squares (WCSS), which is
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F IGURE 5 Noisy images generated via random sampling of 2D Gaussian processes. Top: ground truth images. Bottom: images estimated
via the Fokker–Planck algorithm.

F IGURE 6 Energy and entropy versus noise level (variance) of images with monotonically decreasing noise generated by random 2D
Gaussian processes.

equivalent to the variance. Hence, the objective is to find

arg min
S

k∑
i=1

∑
f∈Si

||f − 𝝁i||2, (9)

where 𝝁i is the mean of all points in cluster i, Si denotes
cluster i, and ‖.‖ is the standard L2 norm. This algo-
rithm was used to identify those patients with intrinsically
similar feature curves.

To compare with traditional delta radiomics, we cal-
culated another feature space by taking the differ-
ence between the final and initial feature values and
patients were partitioned based on their median fea-
ture value. Kaplan–Meier analyses were performed
to test the prognostic value of the radiomic encod-
ing. Log-rank tests34 were used to test for differences
in patient partitions, where a p-value less than or
equal to 0.05 was considered statistically significant.
This analysis was constructed in MATLAB (Math-

Works, Natick, MA) using the MatSurv package.35

To evaluate the potential added value of our tech-
nique, dynamic radiomic features computed via Fokker–
Planck were compared to their classical delta radiomic
counterparts.

3 RESULTS

3.1 Numerical validation

Numerical results confirmed that the Fokker–Planck
method (introduced in Section 2.1.1) can recover image
noise characteristics given sparse input data as bound-
ary conditions. Figure 5 depicts the noise evolution
for the experimental ground truth images and images
generated via Fokker–Planck.

Figure 6 shows plots of image energy and entropy as
noise level, that is, variance of the Gaussian distribution,
is decreased.
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As expected, image energy increases as noise level
decreases, as the image becomes more homogeneous.
The converse is observed for image entropy, again as
expected.The calculated cross-correlations of 0.82 and
0.94 for energy and entropy, respectively, demonstrate
that the image series generated by the Fokker–Planck
method was consistent with the experimental ground
truth.

3.2 Patient study

3.2.1 Patient characteristics

Relevant characteristics of the patient dataset are
summarized in Table 1.

Median follow up time was 40.9 months.82% (n = 47)
of patients were HPV-positive or p16-positive. Tumor
staging was performed via the AJCC 8th edition.

3.2.2 Fokker–Planck trajectories

Implementation of the Fokker–Planck method via Equa-
tion (1) generated a 4D tensor, 𝜌t, which consisted of
simulated 3D images sampled from the manifold. To
visualise the structure of the data, consider Figure 7,
which shows an illustrating example of a 2D slice of
the 3D time evolution for the primary GTV images of
a single patient. A qualitative inspection of the image
series reveals reduction in FDG uptake as a function of
time and accumulation of therapeutic dose,as expected.
This reduction is highly non-linear across both spatial
and temporal dimensions,and complex textural and mor-
phological changes are observed across the 2-week
treatment period. By implementing the thresholding pro-
cedure, a volumetric representation of tumor shrinkage
as a response to treatment can be generated. An exam-
ple of this is shown in Figure 8 and demonstrates the
expected shrinkage of the primary tumor volume across
the treatment period.

3.2.3 Association of dynamic radiomics
with treatment response

Beginning with simple, first order image features, nor-
malized image energy and entropy changes across the
treatment period of a single representative patient are
shown in Figure 9.

Kaplan–Meier analysis identified nine prognostic
dynamic radiomic features where the corresponding
delta radiomic feature was not prognostic. Summary
statistics for these features are shown in Table 2.

Figure 10 shows Kaplan–Meier survival curves for a
representative radiomic feature, in this case Gray Level
Size Zone Matrix (GLSZM) gray-level variance.

TABLE 1 Characteristics of the patient dataset used in this work.

Parameter Total (n = 57)

Sex

Male 46 (80.7%)

Female 11 (19.3%)

Patient age (years)

Median (max—min) 59.3 (77.9 – 39.8)

Primary tumor (T)

T0 1 (1.8%)

T1 12 (21.1%)

T2 22 (38.6%)

T3 9 (15.8%)

T4 4 (7%)

T4a 8 (14%)

T4b 1 (1.8%)

Regional lymph nodes (N)

N0 5 (8.8%)

N1 3 (5.3%)

N2a 2 (3.5%)

N2b 30 (52.6%)

N2c 14 (24.6%)

N3 3 (5.3%)

STAGE

I 1 (1.8%)

II 1 (1.8%)

III 3 (5.3%)

IVa 48 (84.2%)

IVb 4 (7%)

Chemotherapy

Yes 53 (93%)

No 4 (7%)

Smoking status

≤ 10 packs per year 34 (59.6%)

> 10 packs per year 23 (40.4%)

Recurrence/residual
disease

Yes 16 (28.1%)

No 41 (71.9%)

4 DISCUSSION

Our algorithm was able to estimate the time evolution
of PET images of patients with HNSCC throughout
a 2-week treatment period. We observed non-linear
changes in the texture of the images, which is to
be expected given the non-linear changes in tumor
size/shape during radiation treatment. Furthermore,
there was apparent spatial heterogeneity in the evo-
lution of metabolic uptake. Future work will implement
a spatial clustering approach to interrogate potential
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F IGURE 7 Temporal evolution for a single axial slice of a tumor volume across the 2-week treatment period.

F IGURE 8 Volumetric visualization of tumor shrinkage in response to treatment.

F IGURE 9 Time evolution (in days) of image energy and entropy for a representative patient during the 2-week treatment period.
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TABLE 2 Summary statistics for significant dynamic features showing lack of significance in delta radiomic features.

Feature
p-value
(dynamic)

p-value
(delta)

Hazard ratio
(dynamic)

Hazard ratio
(delta)

GLRLM Gray-level non-uniformity 0.0479 0.0938 0.31 2.94

GLRLM Run-length non-uniformity 0.0479 0.103 0.31 2.87

GLRLM Low gray level run emphasis 0.0179 0.397 0.125 1.69

GLRLM Run-length variance 0.0429 0.152 0.314 2.55

GLSZM Gray-level variance 0.0113 0.722 0.174 0.806

MORPHOLOGY Volume 0.0479 0.0832 0.31 3.04

MORPHOLOGY Surface area 0.0162 0.377 0.26 1.73

MORPHOLOGY Compactness 1 0.0218 0.669 0.264 1.29

MORPHOLOGY Perimeter 0.0162 0.155 0.26 2.53

F IGURE 10 Kaplan–Meier curves for the radiomic feature x = GLSZM Gray-level variance. (a) Dynamic radiomics features are partitioned
into two groups via k-means clustering of the patient-specific feature curves. This feature is prognostically significant (p = 0.01) and the curves
show clear separation between group 1 and group 2. (b) Delta radiomics features are partitioned into two groups using the median feature
value. This feature is not prognostically significant (p = 0.72) and shows no clear separation between groups. Risk tables are shown below each
plot and the number of events (and censored patients) is displayed for a set of time points.

heterogeneity in the biological response of the tumor
due to treatment.

We aim to map the regions identified by the clus-
tering to specific areas in the tumor bounding box,
thereby identifying regions of tumor shrinkage. We
hypothesize that the formation of these spatial tumor
habitats is potentially due to underlying biological phe-
nomena, such as aerobic vs sub-hypoxic regions of
disease and/or spatial differences in tumor radiosensi-
tivity. Further work to characterize and interrogate these
phenomena will provide further biological insight and
advance our understanding of treatment response of
oropharyngeal tumors.

The key finding of our study was the prognos-
tic significance of dynamic radiomics over traditional
delta radiomics. Specifically, we observed significance
in dynamic texture and morphology features, but did

not see any prognostic benefit in the corresponding
delta radiomic features. This supports our hypothesis
that the application of delta radiomics in this dataset
may remove useful radiomic signal and affect prognos-
tic value of these features. This work has demonstrated
that the application of delta radiomics should be more
closely studied,and further techniques to boost radiomic
signal should be investigated.

This is a valuable insight, given the prevalence of
delta radiomics in the literature. It has been used as
an analytical tool for a wide variety of applications
and disease sites. Fave et al. investigated changes
in, and prognostic value of, delta radiomics features
extracted from CT images of patients undergoing treat-
ment for non-small cell lung cancer (NSCLC). To a
similar end, Delgadillo et al. examined applications of
delta radiomics to prostate cancer radiotherapy, with an
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emphasis on features extracted from multiple MRIs pre-
and post-treatment.36 Furthermore, Wang et al. applied
a delta radiomics analysis to study acute normal tis-
sue (pulmonary) toxicity following radiation treatment for
oesophageal cancer. PET and CT-based radiomics is
often used to quantify metabolic response of patients
undergoing definitive radio/chemotherapy for head and
neck squamous cell carcinoma. Applications include
tumor segmentation,37 predictive/prognostic studies,38

and normal tissue response to radiation therapy.39,40

Delta radiomics has also been applied outside the field
of radiation therapy, including treatment of metastatic
melanoma via immunotherapy41,42 and differentiation
of radiation-induced necrosis and cancer tissue in
treatments using Gamma Knife radiosurgery.43 Review
articles by Nardone et al., Kothari et al., Spohn et al.,
and Wang, H. et al. provide exhaustive analyses on the
various applications of delta radiomics.

Another key advantage of our technique is the
breadth of analysis that can be performed on the
radiomic feature space. By generating another dimen-
sion of input data, the feature space becomes a
higher-dimensional object. Therefore, it becomes pos-
sible to analyze the data across additional dimensions
and various methods can be used to reduce the dimen-
sionality of the feature space such that it can be
compared to traditional delta radiomics. In our case,
we primarily implemented a k-means clustering tech-
nique, as we hypothesized that this would most effec-
tively capture intrinsic differences between the feature
curves. However, other methods could be used, many
of which apply deep learning tools.44 These methods
would provide a valuable extension to the work done
here.

A key hypothesis underpinning this work stated that
the lack of prognostic significance of delta radiomics
features (obtained from pre- and intra-treatment PET
imaging) arises, at least in part, due to the coarse-
grained nature of delta radiomics.45 There are, however,
other potential reasons for this lack of signal. One such
reason is the lack of 3D radiation dosimetry data in
the original study. One cannot expect to fully realize
the behavior of the physical system without including
such information, as the biological perturbation induced
by radiation therapy is the most significant driver of
changes between pre- and intra-treatment imaging data.
For our data, dosimetry modeling was not a main con-
cern, as patients were given a uniform dose under
well-defined prescriptions outlined in the clinical trial.
Furthermore, prior work has demonstrated that dosime-
try is a shallow feature in this dataset, and that all
necessary useful information comes directly from the
PET/CT images.46 However, if our algorithm were to
be applied to other disease sites, this phenomenon
would need to be accounted for, as we could no longer
guarantee dosimetric homogeneity.

One strategy to incorporate radiation dose informa-
tion is implementation of a biologically guided deep
learning model for post-radiotherapy outcome predic-
tion. Our lab has developed and applied this method
to the OPC dataset studied in this work.32,46 The use
of deep learning tools alone was common to assess
treatment response using the pre-treatment images and
dose distribution information as inputs (e.g.,Wang et al.).

To extend this analysis, Ji et al. developed a novel par-
tial differential equation, based on a reaction-diffusion
model, to incorporate spatial radiation dose information.
Then, a 7-layer encoder-decoder-based convolutional
neural network was trained to generate post-radiation
PET images and break them down into constituent
parts related to each of the terms in the biological
model.This represents integration of both deep learning
models and analytical techniques that encode biolog-
ical information. The study was able to generate the
post-treatment images and break them down into the
constituent mathematical components of the model.
Gamma tests indicated good agreement between the
generated images and ground truth images. This anal-
ysis is particularly relevant to this work, as a possible
extension of our analysis is to model the effects of the
radiation dose as a heat bath in our statistical mechan-
ical framework. Further, encoding biological information
directly via partial differential equations represents a key
step in improving the explainability of analyses such as
ours.

There is an important distinction to be made when
defining the term “equilibrium” in this work. The equi-
librium state of the Fokker–Planck equation, which
generates the evolution of the images, is defined as
the intra-treatment PET/CT images, i.e., after 20 Gy of
radiation therapy. This is clearly different from the bio-
logical equilibrium, as the tumor will continue to evolve
dynamically throughout the remaining treatment period
and beyond. It is therefore important to emphasize that
the equilibrium referred to in this work is not biological,
rather it is statistical and defined a priori by our algorithm.
However, we do not consider this a major limitation of
the work—indeed we make no claim that our algorithm
directly simulates biology. Rather, we consider this work
an application of statistical mechanics and thus our aim
was to describe the macroscopic behavior of a system
without direct modeling of the microscopic environment.

This work seeked to integrate a traditional radiomics
approach with techniques from applied mathematics
and statistical mechanics to generate a new formal-
ism. Integration of radiomic analysis and other ana-
lytical tools that are mechanistically informed may
increase both generalization and interpretation.46–50

For example, radiomics-boosted deep learning mod-
els have been developed for diverse applications,
such as COVID-19 pneumonia detection via chest
radiographs,51 post-resection survival prediction of
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patients with glioblastoma50 and identification of
radionecrosis following stereotactic radiosurgery (SRS)
for brain metastases.48 In each case, integration of
radiomics and deep learning approaches serves to
improve interpretability of deep learning models other-
wise described as “black boxes”. Additionally, inclusion
of time-series information, such as cell-free DNA sam-
ples (acquired via liquid biopsies52) into these types
of studies further enhances the robustness of their
results. These types of analyses, collectively known
as “data fusion”, and the quantification of fusion qual-
ity are exciting new frontiers in computational imaging
research.53

Despite the prognostic value and numerical validation
of our algorithm, a key limitation of this work is lack
of biological validation of our algorithm. By construc-
tion, we attempted to model and analyze data for which
no ground-truth images exist. While we did not explic-
itly aim to simulate biology, the question of validation is
nonetheless of paramount importance. We addressed
this question first via a numerical validation on 2D Gaus-
sian processes. We showed good agreement between
first-order features (energy and entropy) extracted from
images generated by our algorithm and the correspond-
ing features extracted from the ground truth images.This
suggests that our algorithm was able to capture noise
characteristics of the images to a reasonable degree.

Ultimately, this key limitation lies in the lack of inde-
pendent, validation data. The proof-of -concept patient
study outlined in Section 2.2 is a secondary analysis
of a prospective clinical trial (NCT01908504). As such,
enlargement of this dataset is not yet a feasible val-
idation strategy. However, the methodology outlined in
Section 2.1 was developed with small sample sizes in
mind. By using the PDE model based on Equation (1),
we were able to generate unique solutions for each
patient in the dataset.Hence,our method does not suffer
from the traditional pitfalls of overfitting that are common
in analyses based on machine learning techniques.1

To further validate our method, we require quasi-
continuous ground truth datasets of time-series imag-
ing. One possible example includes 4DCT/4D-MRI
images of patients acquired during radiation therapy
treatment planning.54,55 These would provide the neces-
sary ground truth images on which our algorithm could
be validated.This would also necessitate the adaptation
of our algorithm to other disease sites, which introduces
further challenges as described above.

Mouse models could serve as another potential strat-
egy for validation. Specifically, our lab has plans to
conduct an animal trial wherein genetically engineered
mice56 are treated for HNSCC and images are acquired
across multiple length scales (radiological and patholog-
ical). These images would then serve as a ground truth
for our algorithm, with the significant advantage of simi-
larity with our study regarding disease type and imaging
modality.

5 CONCLUSION

In this work,we successfully developed a novel,physics-
based analytical framework,which we define as dynamic
radiomics, that integrated radiomics with partial differ-
ential equations. We were able to validate our method
using a numerical experiment and compared first order
features calculated using our method with ground truth,
which showed good agreement.We then estimated time
evolution between 18F-FDG-PET images of patients
undergoing definitive radiation therapy for OPC.Survival
analysis demonstrated added prognostic value of our
technique over traditional delta radiomics.Our study lays
the groundwork for deeper and more nuanced analysis
of the implications of delta radiomics and the integra-
tion of radiomic analysis with diverse data sources and
techniques.
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