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Abstract 12 

 13 

Sharing deep neural networks and testing the performance of trained networks 14 

typically involves a major initial commitment towards one algorithm, before knowing 15 

how the network will perform on a different dataset. Here we release a free online tool, 16 

CDeep3M-Preview, that allows end-users to rapidly test the performance of any of the 17 

pre-trained neural network models hosted on the CIL-CDeep3M modelzoo. This 18 

feature makes part of a set of complementary strategies we employ to facilitate 19 

sharing, increase reproducibility and enable quicker insights into biology. Namely we: 20 

(1) provide CDeep3M deep learning image segmentation software through cloud 21 

applications (Colab and AWS) and containerized installations (Docker and Singularity) 22 

(2) co-hosting trained deep neural networks with the relevant microscopy images and 23 

(3) providing a CDeep3M-Preview feature, enabling quick tests of trained networks on 24 

user provided test data or any of the publicly hosted large datasets. The CDeep3M-25 

modelzoo and the cellimagelibrary.org are open for contributions of both, trained 26 

models as well as image datasets by the community and all services are free of charge.  27 
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Main 28 

New deep neural networks are developed rapidly and a startling number of trained 29 

models are available online for a wide range of image enhancement and analysis tasks 30 

(see 1 for a recent review). Since training new models is however expensive and 31 

typically requires laboriously expert annotated training data, innovations in sharing 32 

trained models effectively are critical to reduce time and cost in research. Model zoos 33 

and GitHub repositories with different networks and/or trained models are currently the 34 

most common way to share models, but are fairly disparate from the typical workflow 35 

or processing pipelines of biomedical labs. Passively hosted model zoos do not offer 36 

an immediate entry point to evaluate the performance of a neural network or a trained 37 

model, instead require to go first through complex installations - usually on high 38 

performance systems - before being able to know if the network will be useful for the 39 

specific question at hand. The computations to test a deep neural network typically 40 

require installation of several requisites on a high-performance GPU-equipped system 41 

and familiarization with the individual processing routines and configurations 42 

employed. Therefore, the use of model zoos has not been able to eliminate a major 43 

time commitment required to reproduce results. Even recent developments of more 44 

user-friendly solutions for running deep neural networks for image segmentation2–4 on 45 

local or cloud resources do require a time commitment of researchers at different levels 46 

to: set up, configure and troubleshoot then familiarize themselves with software 47 

settings and testing parameters and their influence on performance. Further training 48 

and testing different models on several small or individual very large imaging datasets 49 

can be cumbersome. As a result, many cutting-edge developments for image analysis 50 

with deep learning are still not used by a large portion of the biomedical imaging 51 

community. 52 

To facilitate sharing, increase reproducibility and enable quicker insights into 53 

biology we employ a set of innovative complementary strategies: (1) we recently 54 

released a deep neural network platform, CDeep3M4, which circumvents installation 55 

issues and hardware requirements for end-users. We now provide a docker container 56 

of CDeep3M2 as well as a Google Colab installer with GUI (2) we are hosting 57 

CDeep3M pre-trained models in a public database (modelzoo), on cellimagelibrary.org 58 

(CIL) that also hosts relevant large microscopy datasets5 and (3) we are now releasing 59 

an online CDeep3M-Preview feature, offering instantaneous testing of any trained 60 

neural network that is hosted on the CIL database. This allows users to ‘test drive’ 61 
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CDeep3M models within minutes on either their own data or on any region of interest 62 

on a large number of publicly hosted imaging data to determine if a trained model of 63 

interest performs well for their purpose and/or dataset (Figure 1a-g, Supplementary 64 

Figure 1a-b). All results are displayed through a web interface, accessible to download 65 

and can be shared with a link (Figure 1e-g, Supplementary Figure 1c). Users are 66 

then guided through different options how to run the same model on a larger scale or 67 

re-train the model with their own data using one of our distributions (Figure 1h). At the 68 

same time the CDeep3M model uploader further provides users with a way to share 69 

their trained models with the community in the modelzoo in a common place in a fully 70 

functional and testable state (Figure 2a). 71 

Data processing with state-of-the-art deep neural networks requires high-end 72 

hardware with GPUs with sufficient vRAM. Online processing using deep neural 73 

networks for many users, as provided by CDeep3M-Preview, is limited by hardware 74 

availability equipped with high-end GPUs. We therefore implemented a scheduling 75 

system outsourcing the processing of the preview to the infrastructure of the Pacific 76 

Research Pipeline (PRP), a decentralized computing cluster with GPUs and storage 77 

nodes. The PRP cluster is managed by Kubernetes, using containerized applications 78 

to rapidly deploy computing jobs to available hardware. Our installation for the 79 

CDeep3M-Preview is containerized as a Docker image on the PRP cluster, and is 80 

streamed to available nodes allowing for near instantaneous start-up times (within 81 

seconds). The imaging data and pre-trained models are sent from CIL and the 82 

commands to initiate segmentation and the subsequent overlay with the segmentation 83 

is submitted. Using a next-generation decentralized computer cluster, rather than 84 

running the backend processing on workstation/s, provides scalability at times of high 85 

demand. In practice, this means that the end users can test whether a trained model 86 

performs on their dataset in less than 5min total, without programming knowledge and 87 

without any hardware requirements (Figure 1).  88 

Once the user has identified a pretrained CDeep3M model and tested settings 89 

which perform well for a dataset of interest (Figure 1e), several routes are made 90 

available that provide quick implementations for applying the pre-trained network and 91 

the settings on the complete large-scale dataset. To this end we maintain several 92 

preconfigured installers for the use on local hardware, on supercomputer clusters or 93 

on cloud providers. Following pre-configured CDeep3M installers are provided: (i) 94 

Docker container (ii) Singularity recipe (iii) AWS cloudformation template (iv) Colab 95 
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Notebook (Figure 1h). Detailed descriptions for configurations of each of those 96 

solutions are available with the links provided. Without much effort or the obstacle of 97 

requiring their own GPUs or funding for high-performance hardware the users can now 98 

also take advantage of the free GPUs provided Google Colab, with the CDeep3M-99 

colab installer and graphical user interface (Supplementary Figure 2). 100 

 101 
Figure 1. Application of CDeep3M, using the preview function. (a-b) Selection of a region of interest 102 
(ROI) from a large dataset to run CDeep3M-Preview. (c) Upload ROI data through web interface 103 
(https://cdeep3m-stage.crbs.ucsd.edu/cdeep3m). (d) Chose trained model from CDeep3M modelzoo 104 
and select parameters to perform preview. (e) Results are accessible through a web interface (here 105 
shown segmented and overlay) and (f) data is accessible for download. (g) Through the web interface 106 
the link can easily be shared with collaborators. (h) CDeep3M is available in multiple distributions to 107 
facilitate access for many groups, for quick entry points (CDeep3M-Preview, Docker, AWS, Colab), 108 
small scale tests (Preview, Colab) as well as large scale data science projects (Docker, Singularity, 109 
AWS). The end-user can then either apply the trained model to the large dataset or re-train the model 110 
with specific training data through one of those distributions. (i) Multiple pre-trained models are available 111 
on the CDeep3M-modelzoo and were combined in this example (without re-training the network for this 112 
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dataset) to segment the cellular constituents of synapses. Auto-enhancement is performed in 113 
CDeep3M2 providing generalizable models.  114 

 115 
Figure 2. CDeep3M model uploader, database and demo function. (a) Community contributions to 116 
the CDeep3M-modelzoo are facilitated through a web interface to upload and add metainformation to 117 
trained models. (b) Each trained model receives a citable DOI and (c) is added to the CDeep3M 118 
database, and becomes therefore accessible for the Preview function and (d) can be easily downloaded. 119 
(e) The cellimagelibrary hosts many large-scale imaging datasets to which any of the trained networks 120 
in the modelzoo can now be applied through the CDeep3M-demo function in an image browser. (f) 121 
Example using a broadly trained CDeep3M model on a dataset for which it was no trained (before any 122 
transfer learning is applied). Results can be easily shared through using the specific job ID and the web 123 
interface. Results from (f) are at: https://cdeep3m-viewer.crbs.ucsd.edu/cdeep3m_result/view/6447 124 
 125 

It is advantageous to co-host trained models and imaging data on the same 126 

platform and maximize cross-linking between the two and facilitate testing across 127 

several large datasets for generalizability. With the new extensions to the CDeep3M-128 
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Modelzoo the users can upload their trained models to the CIL repository (Figure 2a-129 

d), in order to share them or to apply them through the preview function on one of the 130 

imaging datasets. In addition, metadata about the available trained models is stored in 131 

the database, such as the targeted cell component, staining procedures, imaging 132 

modality and voxel dimensions. When releasing a trained model on the CIL database 133 

to the public, it will generate a citable Digital Object Identifier (DOI) (Figure 2b, 2d). 134 

The DOI is a persistent identifier used to identify objects uniquely, standardized by the 135 

International Organization for Standardization (ISO). To help other groups unlock 136 

valuable large scale data we are providing the CDeep3M-Demo, facilitating to test pre-137 

trained models on areas of interest on the large scale datasets available on  138 

http://cellimagelibrary.org/ (CIL; Figure 2e). We co-host trained CDeep3M models on 139 

the CIL providing us with the infrastructure already in place for data storage, metadata 140 

organization and large-scale image visualization. CIL is open-source software 141 

providing storage and user interfaces to deliver a publicly searchable database of 142 

microscopy images and metadata to facilitate data sharing and reuse. The CIL data 143 

input form allows end-users to submit images to the CIL data repository and annotate 144 

the images with the ontology markup.  145 

 146 

Together with the online preview function we release an upgrade to CDeep3M2, 147 

which provides additional functionalities and reduced runtimes. The new version of 148 

CDeep3M is backwards compatible, so that all previously trained models can still be 149 

applied and used for transfer learning with the new release. Importantly, we 150 

incorporated enhanced image augmentation strategies, that can easily be configured, 151 

to facilitate the training of more broadly tuned models. In the enhanced training 152 

augmentation pipeline, the images are first processed through the sixteen rotations 153 

and inversions (x/y and z) before each stack will go through a set of additional 154 

secondary and/or tertiary augmentations. The augmentations are performed as 155 

follows: primary augmentations consisting of rotations and inversions (x: left/right, y: 156 

top/down, z: forward/reverse) are always performed, secondary augmentations 157 

consisting of image filters (contrasting, sharpening, blurring, total variation denoising, 158 

introduction of uniform noise, histogram equalization, skewing, elastic distortion; and 159 

tertiary augmentations, resizing the images. Secondary and tertiary augmentation 160 

strengths are determined by the user with a scaling factor between 0 (no additional 161 

augmentation) and 10 (strong augmentation). The combination of augmentation 162 
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strength can be customized for each dataset depending on the purpose of the training 163 

(fine tuning of model for one individual dataset or broad training for generalizable 164 

model). Furthermore, users can now easily provide multiple training datasets that will 165 

be used during training, which facilitates generating broadly applicable trained 166 

networks. 167 

Applying the CDeep3M-Preview and Demo functions on the cellimagelibrary 168 

serves us as an extreme test case scenario at unprecedented scale to test and improve 169 

how well a trained deep neural network performs on previously unseen data 170 

(generalizability). The available datasets are stored at various imaging conditions 171 

(pixel- and voxelsize), ranging from 8bit unsigned integer to 32bit signed integer, with 172 

different levels of noise, staining intensities and imaging conditions, acquired from 173 

different tissue types. These constraints are very typical for different biological sample 174 

preparation and imaging. Rather than performing training for each individual dataset, 175 

we focused on training and providing more generalizing models, and stabilize their 176 

performance through improved image pre-processing, which will reduce the 177 

requirements to re-train the models. Mainly we automatized the following steps: image 178 

conversion to 8bit, with simultaneous clipping of outlier pixels, readjustment of contrast 179 

and a total variation denoising (Figure 1i). Overall, we note that these implementations 180 

improved the generalizability of trained models making them broadly applicable to 181 

many more datasets, since this reduces most of the extreme variations in signal-to-182 

noise levels and contrast between different SBEM datasets. 183 

Altogether, the CDeep3M-Preview and new set of tools provided here gives 184 

biomedical researchers immediate access to experiment with AI for image 185 

segmentation and the ability to test different trained models near-instantaneously. A 186 

similar quick entry approach has been taken recently with DeepCell, which allows 187 

users to track cells in their own live cell imaging data with deep learning6. On the 188 

CDeep3M modelzoo a broad range of pre-trained models, trained on segmentation 189 

tasks for electron microscopy, X-ray microCT and light microscopy data are readily 190 

available. Furthermore, by taking advantage of an emerging cyberinfrastructure of 191 

decentralized compute cluster, the preview is scalable to account for the high demand 192 

of many users. This approach can serve as an entry point for community members 193 

with no experience in deep or machine learning to become familiar with the technology 194 

and experiment with the effect of different parameter settings and will contribute to 195 

democratize deep learning in the bioimaging community while allowing them to scale 196 
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their use case afterwards quickly to extremely large datasets through the CDeep3M 197 

built in processing pipelines. 198 

 199 
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Methods 235 

CIL backend system. Under the CIL system, the metadata will be converted into 236 

JSON format and stored in a NoSQL datastore. The CIL utilizes Elasticsearch as its 237 

JSON search engine since it provides a distributed, multitenant-capable full-text 238 

search engine with an HTTP web interface. When JSON data is imported into the 239 

Elasticsearch datastore, all of the data fields are automatically indexed and 240 

immediately searchable using the built-in web-service. These built-in functions in 241 

Elasticsearch are crucial for software development because it saves tremendous 242 

development time otherwise spent building data models and backend services. 243 

 244 

Backend operations Scheduling system. At the core of the scheduling system for 245 

the CDeep3M-Preview and Demo functions is the beanstalkd queue 246 

(https://beanstalkd.github.io/). Beanstalkd is a robust multichannel FIFO queuing 247 

system. A single queue (or tube) contains the jobs in the order they are submitted. 248 

Each job consists of the UID of the requestor, a description of the job to be run and its 249 

arguments, and an authentication token with a timestamp. A job can be in one of 4 250 

states, ready, reserved, delayed, or buried. A costum written Perl based web API 251 

(stalker_web) is used as an abstraction layer for the interaction with beanstalkd. A job 252 

is submitted to the system via a client; the client does a few basic sanity checks against 253 

the submitted job, secures a token and submits the job to the queue via stalker_web 254 

and if the submission is successful is returned the job id in the tube. Once in the tube 255 

the job is in the ready state.  256 

On the processing side there is a worker that periodically checks the tube for 257 

ready jobs, if a job is found, it’s parsed and if the worker has the capabilities needed 258 

to run the job it verifies the token then reserves the job and then places it in the delayed 259 
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state for an amount of time equal to the expected runtime (ERT). This removes the job 260 

from the ready state so no other workers will see the job. Since these are typically 261 

longer running jobs and are designed to run on geographically disparate hardware in 262 

an ad libitum fashion the delay is set to remove the need for the constant 263 

communication between worker and queue required by the reserved state.  264 

The worker then sets the environment, downloads any data or models it needs, 265 

and proceeds to process the job as the UID of the submitter, collecting the output of 266 

the commands into a log. A separate watchdog process is started that will check every 267 

90% of ERT if the worker process is still running and if it is, try to reset the delay on 268 

that job to ERT until successful or the parent process exits. Once the commands finish, 269 

the worker deletes the job from the queue and the log is published to a separate tube 270 

named with the job id of the original job.  271 

The worker sends the output data back to the requestor via an API call.  If the 272 

worker should die or communication between the worker and the queue goes down 273 

the delay time will eventually run out and the job will go back into ready state for 274 

another worker to pick up and process.  275 

 276 

PRP platform. CDeep3M-preview is running as a Kubernetes Pod on the Pacific 277 

Research Platform (PRP) and configured to use gpu-pods equipped with GPUs with 278 

least 11GB vRAM. PRP is spanning over 20 universities and institutions, all 279 

connected by dedicated optical light-paths at speeds of 10-100gb/s. A list of currently 280 

available PRP resources can be found at: https://ucsd-281 

prp.gitlab.io/userdocs/running/gpu-pods/. 282 

 283 

CDeep3M2 data augmentations. Data augmentations are used to avoid overfitting to 284 

training data and intended to increase generalizability of trained models. To facilitate 285 

regulating which data augmentation strategies are used we chose to separate 286 

augmentation strategies into following three categories:  287 

Primary augmentations refer to augmentations that only change the image 288 

orientations, such as data rotations and flipping in x, y and z directions. Since those 289 

leave the data unaltered they are always performed, on each training dataset, to 290 

generate 16 variations of the same data. 291 

Secondary augmentations are data augmentations which alter the noise level, the 292 

brightness or the contrast of the images. Secondary augmentations are performed if a 293 
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setting between 1 (weak) to 10 (strong) is chosen. Following operations are used in 294 

secondary augmentations: increase and lowering of the image contrast; sharpening 295 

and gaussian blurring of the image stack; total variation using the Chambolle and/or 296 

Bregman filter to denoise the image; adding of random binary gaussian noise; 297 

normalization of the image by performing histogram equalization; random skewing of 298 

the image stack to four different directions (upper left, upper right, lower left, lower 299 

right) while maintaining the image’s aspect ratio; elastic distortions across the image 300 

stack in which the first and the last images of the stack are distorted by a randomly 301 

generated gaussian vector field while the images in between are distorted by the 302 

interpolated field in between the two. 303 

Tertiary Augmentation are performed if a setting between 1 (weak) to 10 (strong) is 304 

chosen. During the tertiary augmentations images are resized, according to a strength 305 

selected by the end user (values 1-10). Data is resized using upscaling alternating with 306 

downscaling, to broaden the networks capabilities to recognize the same object at a 307 

different pixelsize. 308 

 309 

Code availability 310 

All code is open access. The CDeep3M2 Docker container can be pulled directly from 311 

Docker-Hub at https://hub.docker.com/r/ncmir/cdeep3m or simply running ‘docker pull 312 

ncmir/cdeep3m:latest’. The Google Colab Jupyter Notebooks with graphical user-313 

interface (GUI) are available on GitHub at https://github.com/haberlmatt/cdeep3m-314 

colab. The CDeep3M2 AWS cloudformation template is available here. CDeep3M2 315 

source code is available on GitHub https://github.com/CRBS/cdeep3m2. The 316 

singularity image is available at: http://cellimagelibrary.org/cdeep3m/singularity. 317 
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